Séance ArduBlock et Arduino

Partie 1 - Boite à sourire

Brancher la « boite à sourire » sur une prise USB avant d'allumer l'ordinateur.

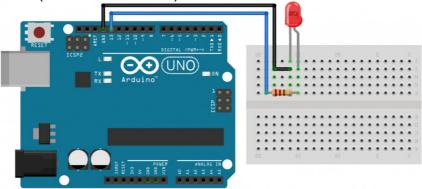
Allumer l'ordinateur et lancer le logiciel Arduino :

Vérifier le type de carte et le port de connexion dans le Menu Outils. Les cartes sont de 2 types Arduino Uno ou Arduino Nano/Atmega 328

Exercice 1: Faire clignoter 1 seconde diode

Télécharger le fichier d'exemple Blink : Fichier/exemple/Basic/Blink

Un programme arduino se décompose en 3 parties :


- Déclaration des variables
- Initialisation des variables (void setup)
- Programmation (void loop)

```
const int ledPin = 13; // déclaration de la variable du pin du bouton

void setup()
{
    // initialisation de la PIN de la LED
    pinMode(ledPin, OUTPUT);
}

void loop()
{
    digitalWrite( ledPin , HIGH );
    delay( 1000 );
    digitalWrite( ledPin , LOW );
    delay( 1000 );
}
```

Branchement de la carte (dans la boite a sourire)

fritzing

Nota il faut protéger la carte et la LED avec une résistance de 220Ω

Cliquer sur Téléverser

Le programme est transféré de l'ordinateur vers la carte arduino. Une led clignote.

Exercice 2: Faire clignoter 1 seconde led

Observation et appropriation du code

// les diodes sont sur les pins 7 à 13.

// Le programme s' exécutera des que la carte sera alimenté en électricité.

Exercice 3: Chenillard

Repérer le numéro de toutes les diodes en les faisant s'allumer les unes après les autres dans l'ordre comme un chenillard.

Partie 2 – Jeu du métronome

Exercice 4 : Création d'un jeu Arduino : Métronome

<u>Étape 1 : Commander l'allumage d'une diode</u> Nouveau sketch

```
const int ledPin = 13;
                         // déclaration de la variable du pin du bouton
const int buttonPin = 2;
                         // déclaration de la variable du pin du bouton
int buttonState = 0;
                        // variable qui donne le statut du bouton
void setup() {
 // initialisation de la PIN de la LED
                                                                                                     . ..... ..... ..... ..
 pinMode(ledPin, OUTPUT);
 // initialisation de le PIN du bouton
 pinMode(buttonPin, INPUT);
void loop(){
 // lecture du statut du bouton
 buttonState = digitalRead(buttonPin);
 // si le bouton est appuyer
 if (buttonState == HIGH) {
  // allumer la LED:
  digitalWrite(ledPin, HIGH);
 else {
  // turn LED off:
  digitalWrite(ledPin, LOW);
```

Étape 2 : Création du jeu du métronome

```
const int buttonPin = 2;
                          // déclaration de la variable du pin du bouton
const int ledPin = 13;
                         // déclaration de la variable du pin du bouton
                        // variable qui donne le statut du bouton
int buttonState = 0;
unsigned long dateDernierChangement = 0;
unsigned long intervalle = 0;
void setup() {
// initialisation de la PIN de la LED
 pinMode(ledPin, OUTPUT);
 // initialisation de le PIN du bouton
 pinMode(buttonPin, INPUT);
 // initialisation du calcul de la durée de temps
 intervalle = millis() - dateDernierChangement;
void loop(){
 // lecture du statut du bouton
 buttonState = digitalRead(buttonPin);
 // si le bouton est appuyer
 if (buttonState == HIGH) {
  // initialisation du tempo de reference
  intervalle = millis() - dateDernierChangement;
  dateDernierChangement = millis();
  if (intervalle >1200 || intervalle < 800) {
    digitalWrite(ledPin, HIGH);
    delay(50);
    digitalWrite(ledPin, LOW);
    delay(50);
    digitalWrite(ledPin, HIGH);
```

```
delay(50);
digitalWrite(ledPin, LOW);
delay(50);
digitalWrite(ledPin, HIGH);
delay(50);
digitalWrite(ledPin, LOW);
delay(50);
digitalWrite(ledPin, HIGH);
delay(50);
digitalWrite(ledPin, LOW);
}
else {
digitalWrite(ledPin, HIGH);
delay(300);
digitalWrite(ledPin, LOW);
}
else {
digitalWrite(ledPin, HIGH);
delay(300);
digitalWrite(ledPin, LOW);
}
}
```

Étape 3 : Visualiser l'écart de temps

Nous allons rajouter
dans la partie setup la ligne : Serial.begin(9600);
et juste en dessous de dateDernierChangement = millis();
Serial.println(intervalle);
ce code permet de transférer de l'arduino vers l'ordinateur la valeur de la variable « intervalle »
→ Ouvrir une fenêtre série configurée à 9600 bauds

Étape 4 : Le jeu fonctionne et il est temps de mettre un score Déclaration d'une nouvelle valeur int en début de programme Initialisation de la variable à 0 dans le setup implémentation de la variable dans la boucle else : score++ ; et écriture dans la console serie de la variable score Serial.println("score"+score) ;

```
const int buttonPin = 2;
                           // déclaration de la variable du pin du bouton
const int ledPin = 13;
                          // déclaration de la variable du pin du bouton
int buttonState = 0;
                         // variable qui donne le statut du bouton
int score = 0; // score
unsigned long dateDernierChangement = 0;
unsigned long intervalle = 0;
void setup() {
// initialisation de la PIN de la LED
 pinMode(ledPin, OUTPUT);
 // initialisation de le PIN du bouton
 pinMode(buttonPin, INPUT);
 // initialisation du calcul de la durée de temps
intervalle = millis() - dateDernierChangement;
Serial.begin(9600);
void loop(){
// lecture du statut du bouton
 buttonState = digitalRead(buttonPin);
 // si le bouton est appuyer
 if (buttonState == HIGH) {
  // initialisation du tempo de reference
  intervalle = millis() - dateDernierChangement;
  dateDernierChangement = millis();
Serial.println(intervalle);
  if (intervalle >1200 || intervalle < 800) { digitalWrite(ledPin, HIGH);
    delay(50);
digitalWrite(ledPin, LOW);
     delay(50);
     digitalWrite(ledPin, HIGH);
     delay(50);
     digitalWrite(ledPin, LOW);
     delay(50);
     digitalWrite(ledPin, HIGH);
     delay(50);
digitalWrite(ledPin, LOW);
     delay(50);
     digitalWrite(ledPin, HIGH);
     delay(50);
     digitalWrite(ledPin, LOW);
Serial.println('score'+score);
 else {
   digitalWrite(ledPin, HIGH);
   delay(300)
   digitalWrite(ledPin, LOW);
score++;
 }
}
```